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Abstract

-We define an historical algebra for historical relations. This historical algebra, a

straightforward extension of the conventional relational algebra, supports valid time, the

time when an object or relationship in the enterprise being modeled is valid. Historical

versions of the five relational operators union, difference, cartesian product, selection,

and projection are defined and a new operator, historical derivation, is introduced. The

algebra includes aggregates and is shown to have the expressive power of the temporal

query language TQuel. The algebra is consistent with the user-oriented model of historical

4 relations as space-filling objects and satisfies all but one of the associative, commutative,

and distributive tautologies involving union, difference, and cartesian product.
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Time is a universal attribute of both events and objects in the real world. Events occur at
specific points in time; objects and the relationships among objects exist over time. The ability to
model this temporal dimension of the real world is essential to many computer system applications
(e.g., econometrics, banking, inventory control, medical records, and airline reservations). Unfortu-
nately, conventional database management systems do not support the time-varying aspects of the
real world. Conventional databases can be viewed as snapshot databases in that they represent the
state of the real world at one particular point in time. As a database is changed to reflect changes
in the real world, out-of-date information, representing past states of the real world, is deleted. The
need for database support for time-varying information has received increasing attention; in the
last five years, more that 80 articles relating time to information processing have been published
[McKenzie 1986].

In previous papers, we identified three orthogonal kinds of time that a database management
system (DBMS) needs to support: valid time, transaction time, and user-defined time (Snodgrass
& Ahn 1985, Snodgrass & Ahn 1986]. Valid time concerns modeling time-varying reality. The valid
time of, say, an event is the clock time at which the event occurred in the real world, independent
of the recording of that event in some database. Transaction time, on the other hand, concerns
the storage of information in the database. The transaction time of an event is the transaction
number (an integer) of the transaction that stored the information about the event in the database.
User-defined time is an uninterpreted domain for which the DBMS supports the operations of
input, output, and perhaps comparison. As its name implies, the semantics of user-defined time
is provided by the user or application program. These three types of time are orthogonal in the
support required of the DBMS.

In this paper we propose extending the relational algebra [Codd 19701 to enable it to handle
valid time. The relational algebra already supports user-defined time in that user-defined time is
simply another domain, such as integer or character string, provided by the DBMS [Bontempo 1983,
Overmyer & Stonebraker 1982, Tandem 1983]. The relational algebra, however, supports neithervalid time nor transaction time. Hence, for clarity, we refer to the relational algebra hereafter

as the snapshot algebra and our proposed algebra, which supports valid time, as an historical
algebra. We do not consider here any extension of the snapshot algebra or our historical algebra
to support transaction time. Elsewhere [McKenzie & Snodgrass 1987A] we describe an approach
for adding transaction time to the snapshot algebra and show that this approach applies without
change to all historical algebras supporting valid time. This approach for adding transaction time
to the snapshot algebra and historical algebras also provides for scheme evolution [McKenzie &
Snodgrass 1987B]. Because valid time and transaction time are orthogonal, we are able to study
each type of time in isolation.

1 Approach

To extend the snapshot algebra to support valid time, we define formally an historical algebra.
We provide formal definitions for an historical relation, six algebraic operators, and two histori-
cal aggregate functions. We then show that the algebra has the expressive power of the TQuel
(Temporal QUEry Language) [Snodgrass 1987] facilities that support valid time.
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The algebra reflects our basic design goal to define an historical algebra that has as many of the
most desirable properties of an historical algebra as possible. For example, we wanted the historical
algebra to be a straightforward extension of the snapshot algebra so that relations and algebraic
expressions in the snapshot algebra would have equivalent counterparts in the historical algebra.
Yet, we also wanted the algebra to support historical queries and adhere to the user-oriented model
of historical relations as space-filling objects, where the additional, third dimension is valid time.
Hence, we did not restrict historical relations to first-normal form, insist on time-stamping of entire
tuples, or require that time-stamps be atomic-valued because each of these restrictions would have
prevented the algebra from having other, more highly desirable properties. All design decisions
(e.g., to time-stamp attributes rather than tuples) were made so that the resulting algebra would
possess a maximal set of desirable properties. In Section 4 we briefly discuss our major design
decisions and the importance of those decisions in determining the algebra's properties. A detailed
discussion of desirable properties of historical algebras as well as an evaluation of our algebra and
the historical algebras proposed by others, using the identified properties as evaluation criteria,
can be found elsewhere [McKenzie & Snodgrass 1987C].

Efficient direct implementation of the algebra was not one of our primary design objectives.
Rather, our goal was to define an algebra that preserves the associative, commutative, and dis-
tributive properties of the snapshot algebra in order that optimization strategies developed for the
snapshot algebra can be applied in implementations of the historical algebra. Our formulation of
the algebraic operators would be inefficient if mapped directly into an implementation. While we
can envision more efficient implementations, incorporating such efficiencies in the semantics would
have made it much more complex. Finally, we expect that new optimization strategies, unique to
the historical algebra, also will be used in its implementation.

In the next section we define our historical algebra. Then we show that the algebra has the
expressive power of the TQuel calculus. We conclude the paper with a discussion of the major
design decisions we made in defining the algebra. The notational conventions used in the paper
are described in Appendix A.

2 An Historical Algebra for Historical Relations

The algebra presented in this section is an extension of the snapshot algebra. As such, it retains the
basic restrictions on attribute values found in the snapshot algebra. Neither set-valued attributes
nor tuples with duplicate attribute values are allowed. Valid time is represented by a set-valued
time-stamp that is associated with individual attributes. A time-stamp represents possibly disjoint
intervals and the time-stamps assigned to two attributes in a given tuple need not be identical.

2.1 Historical Relation

Assume that we are given a relation scheme defined as a finite set of attribute names )J { N.,
N,}. Corresponding to each attribute name N0 , 1 < a < m, is a domain D., an arbitrary, non-
empty, finite or denumerable set [Maier 831. Let the positive integers be the domain T, where each
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element of T represents a time quantum [Anderson 821. Assume that, if t1 immediately precedes
t 2 in the linear ordering of T, then ti represents the interval [ti, t 2 ). The granularity of time (e.g.,
nanosecond, month, year) associated with 7 is arbitrary. Note that because time is a continuous
function, all measures of time can be viewed as measures of intervals. Hence, when we speak of a
"point in time," we actually refer to an interval whose duration is determined by the granularity of
the measure of time being used to specify that "point in time." Also, let the domain [P(T) be the
power set of T. An element of [P(T) is then a set of integers, each of which represents an interval
of unit duration. Also, any group of consecutive integers t1 , ... , t, appearing in an element of
P(T), together represent the interval (ti, tn + 1).

If we let value range over the domain Du...u D. and valid range over the domain P(T), we
can define an historical tuple p as a mapping from the set of attribute names to the set of ordered
pairs (value, valid),

p :u(DI u u P(T))

with the following restrictions:

* Va, 1 < a < m, value(p(N0 )) E Pa and

* 3a, 1 < a < m, valid(p(Na)) $ 0.

Hereafter, we will refer to p(Na) simply as pa, where a denotes attribute Na in scheme .M, when
there is no ambiguity of meaning. Note that it is possible for all but one attribute to have an
empty time-stamp.

Let P be the domain of all tuples over the attribute names of the relation scheme JN and the
domains P1, ... , Pm, and P(T). Define two tuples, p, p' E P, to be value-equivalent if and only
if Va, 1 < a < m, value(pa) = value(p'). An historical relation h is then defined as a finite set
of historical tuples, with the restriction that no two tuples in the relation are value-equivalent. M
represents the domain of all historical relations on the relation scheme.

EXAMPLE. Assume that we are given the relation scheme Student = {Name, Course} and the
following set of tuples over this relation scheme. For this and all later examples, assume that the
granularity of time is a semester relative to the Fall semester 1980. Hence, I represents the Fall
semester 1980, 2 represents the Spring semester 1981, etc.

S { (Phil, {1,3}), (English, {1,3}))

((Norman, {1, 2}), (English, {1,2}))

((Norman, {5,6}), (Calculus, {5,6}))

((Phil, {4}), (English, {4})) }

For notational convenience we enclose each attribute value in parentheses and each tuple in angular
brackets (i.e., ()). We assume the natural mapping between attribute names and attribute values

(e.g., Name - (Phil, {1,3}), and Course -- (English, {1,3})). Note that S is not an historical

up 3
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relation because there are value-equivalent tuples in the set (the first and fourth tuples are value-
equivalent). If we replace the two value-equivalent tuples in S with a single tuple, then the new set
S, is an historical relation.

S= ((Phil, (1,3,41), (English, (1,3,4)))

((Norman, {1,2}), (English, {1,2}))

((Norman, {5,6}), (Calculus, {5,6})) } 0

2.2 Historical Operators

We present eight operators that serve to define the historical algebra. Five of these operators
- union, difference, cartesian product, projection, and selection - are analogous to the five
operators that serve to define the snapshot algebra for snapshot relations [Ullman 821. Each of
these five operators on historical relations is represented as dp to distinguish it from its snapshot
algebra counterpart op. Historical derivation is a new operator that replaces the time-stamp of
each attribute in a tuple with a new time-stamp, where the new time-stamps are computed from
the existing time-stamps of the tuple's attributes. The remaining two operators, aggregation and
unique aggregation, compute aggregates. After defining the operators, we show that all eight
preserve the value-equivalence property of historical relations.

EXAMPLE. The three relations S1, S2, and S3 are used in the examples that accompany the
definitions of the operators. S2 , like S1 , is an historical relation over the relation scheme Student =
{Name, Course}. Ss is an historical relation over the relation scheme Home = {Name, State}.
While the attributes of a tuple in S1 , S2 , and Ss have the same time-stamp, in general, attributes
within a tuple can have different time-stamps.

S2 = { ((Phil, {3,41), (English, (3,41))

((Norman, {7}), (Calculus, (71))

((Tom, {5,6}), (English, {5,6})) }

$3 = { ((Phil, {1,2,3}), (Kansas, {1,2,3})),

((Phil, {4,5,6}), (Virginia, {4,5,6}))

((Norman, {1,2,5,6)), (Virginia, {1,2,5,6}))

((Norman, {7,8}), (Texas, (7,8))) }

4



2.2.1 Union

Let Q and R be historical relations of m-tuples over the same relation scheme. Then the historical
union of Q and R, denoted Q 0 R, is defined as

QC 0R A {qrn I Q(q) A -(3r, r E R A Va, 1 < a < m, value(qa) = value(ra))}

U {rym I R(r) A -'(3q, q E Q A Va, 1 < a < m, value(ro) = value(qa))}

U { u ' Iq 3r, q E Q A r E R A Va, 1 < a < m, value(uG) = vaiue(q.) = value(r.)

A valid(ua) = valid(qa) U valid(ra)}

Q 0 R is the set of tuples that are in Q, R, or both, with the restriction that each pair of value-
equivalent tuples is represented by a single tuple. Note that if a tuple in Q and a tuple in R are
value-equivalent, then they are represented in Q 0i R by a single tuple. The time-stamp associated
with each attribute of this tuple in Q 0 R is the set union of the time-stamps of the corresponding
attribute in the value-equivalent tuples in Q and R.

EXAMPLE. S 16 S2 = { ((Phil, {1,3,4}), (English, {1,3,4}))

((Norman, {1,2}), (English, {1,2}))

((Norman, (5,6,7}), (Calculus, {5,6,7}))

((Tom, {5,6}), (English, {5,6})) }0

2.2.2 Difference

Let Q and R be historical relations of m-tuples over the same relation scheme. Then the historical
difference of Q and R, denoted Q - R, is defined as

Q R {q I Q(q) A -(3r, r E R A Va, 1 < a < , talue(q,) = value(ra))}

. {um I (3q3r, q E Q A r E R A Va, 1 < a < m, value(u,,) = value(qa) = value(r,)

A valid(us) = valid(qa) - valid(r,,))

A (3a, I < a < M A valid(uo) # 0)

5'- }
Q - R is the set of all tuples that satisfy three criteria. First, a tuple in Q R must have a value-

equivalent counterpart in Q. Second, the time-stamp of each attribute of a tuple in Q - R must

*, equal the set difference of the time-stamps of the corresponding attribute in the value-equivalent
* tuple in Q and the value-equivalent tuple in R, if any. Third, the time-stamp of at least one
, attribute of each tuple in Q - R must be non-empty.
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EXAMPLE. S, S2 = { ((Phil, {1}), (English, {1}))

((Norman, {1,2}), (English, {1,2})))

((Norman, {5,6}), (Calculus, {5,6})) 0

2.2.3 Cartesian Product

Let Q be an historical relation of ml-tuples and R be an historical relation of m2-tuples. Then
Q R, the historical cartesian product of Q and R, is defined as

Q RA

{UML+m2 I (3q, q E Q A Va, 1 < a < inl, value(ua) = value(q.) A valid(ua) = valid(qa))

A (3r, r E R A Va, 1 < a < M 2 , value(um,+) = value(r,) A valid(um,+a) = valid(r.))

The cartesian product operator for historical relations is identical to the cartesian product operator
for snapshot relations. Q R is the set of (Ml + m2)-tuples whose components ul, ... , u,,, form
a tuple in Q and whose components u,ml+,, ... , un+,n2 form a tuple in R.

EXAMPLE.

SJ$3 = { ((Phil, {1,3,4}), (English, {1,3,4}), (Phil, {1,2,3}), (Kansas, {1,2,3}))

((Phil, {1,3,4}), (English, {1,3,4}), (Phil, {4,5,6}), (Virginia, {4,5,61))
((Phil, (1,3, 41), (English, (1,3, 4}), (Norman, (1,2, 5, 6}), (Virginia, {1,2, 5,6})),

((Phil, {1,3,4}), (English, {1,3,4}), (Norman, {7,8}), (Texas, {7,8})) ,

((Norman, {1,2}), (English, {1,2}), (Phil, {1,2,3}), (Kansas, {1,2,3}))

((Norman, {1,2}), (English, {1,2}), (Phil, {4,5,6}), (Virginia, {4,5,6}))

((Norman, {1,2}), (English, {1,2}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6}))

((Norman, {1,2}), (English, {1,2}), (Norman, {7,8}), (Texas, {7,8})) ,

((Norman, {5,6}), (Calculus, {5,6}), (Phil, {1,2,3}), (Kansas, {1,2,3}))

((Norman, {5, 6}), (Calculus, {5,6}), (Phil, {4,5,6}), (Virginia, {4,5,6}))

((Norman, {5,6}), (Calculus, {5,6}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6}))

((Norman, {5,6}), (Calculus, {5,6}), (Norman, {7,8}), (Texas, {7,8})) }

Let this be relation S4 over the relation scheme {SName, Course, JIName, State}. C"
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2.2.4 Selection

Let R be an historical relation of m-tuples. Also, let F be a boolean function involving

* Attribute names N1, ... , Nm;

* Constants from the domains D,, ... , Pm;

e Relational operators <, =, >; and

o Logical operators A, V, and -'

where, to evaluate F for a tuple r, r E R, we substitute the value components of the attributes of
r for all occurrences of their corresponding attribute names in F. Then the historical selection of
R, denoted by &F(R), is defined as

&F,(R) {r" I r E R A F(value(rl), ... , value(r,))}

Thus, & is identical to a in the snapshot algebra. &F(R) is simply the set of tuples in R for wnch
F is true.

EXAMPLE.

&S Name=HName(S4) =

{ ((Phil, {1,3,4}), (English, {1,3,4}), (Phil, {1,2,3}), (Kansas, {1,2,3}))

((Phil, {1,3,4}), (English, {1,3,4}), (Phil, {4,5,6}), (Virginia, {4,5,6}))

((Norman, {1,2}), (English, {1,2}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6}))

((Norman, {1,2}), (English, {1,2}), (Norman, {7,8}), (Texas, {7,8}))

((Norman, {5,6}), (Calculus, {5,6}), (Norman, {1,2,5,6}), (Virginia, {1,2,5,6}))
((Norman, {5,6}), (Calculus, {5,6}), (Norman, {7,8}), (Texas, {7,8})) }

Let this be relation S5 over the relation scheme {SName, Course, HName, State}. 0

2.2.5 Projection

Let R be an historical relation of m-tuples and let al, ... , a, be distinct integers in the range 1
to rn. Then the historical projection of R, denoted by rN.,.N, o(R), is defined as

7
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*N...... N . (R) - {u" I (Vl, 1 < 1 < n, Vt, t e valid (u,),
3r, (r e R

A Vh, 1 < h < n, value(uh) = value(r,,)

A t E valid(ro,))

A (Vr, (r E R A V1, 1 < 1 < n, value(ra,) = value(u,)),

Vh, I < h < n, valid(r,,) C valid(uth)

)

* (31, 1 < I < n A vali(u,) 6 0)

Like the projection operator for snapshot relation, the projection operator for historical relations
retains, for each tuple, only the tuple components that correspond to the attribute names in
{ N.1 , ... , N }. All other tuple components are removed. Value-equivalent tuples in the resulting
set are then combined and tuples that have an empty valid component for all tuple components
are removed.

EXAMPLE iSNam.,Staut(SS)= { ((Phil, (1,3,4]), (Kansas, {1,2,3}))

((Phil, {1,3,4}), (Virginia, {4,5,6})) ,

((Norman, {1,2,5,6}), (Virginia, {1,2,5,6}))

((Norman, {1,2,5,6}), (Texas, {7,8})) }

Let this be relation S 6 over the relation scheme Enrollment = {Name, State}. Also assume that
in this relation the time-stamp associated with the value of the attribute Name represents the
interval(s) when the specified student was enrolled and that the time-stamp associated with the
value of the attribute State represents the interval(s) when the student was a resident of the
specified state. 0

The operator k also supports projections on expressions. For an arbitrary n, let Evaluel, 1 <
I < n, be an arbitrary expression involving the attribute names Na, I < a < m. Evalue is
evaluated, for a tuple r, r E R, by substituting the value components of the attributes of r for
all occurrences of their corresponding attribute names in Evaluel. Also, let Evalidl, I < I <
n, be an arbitrary expression involving the attribute names Na, 1 < a < m, where Evalidt
is evaluated for a tuple r, r E R, by substituting the valid components of the attributes of r
for all occurrences of their corresponding attribute names in Evalidi. In addition, assume that
evaluation of Evaluel for every tuple r produces an element of the domain Db, 1 < 6 < m, and that
evaluation of Evalidl produces an element of the domain 8(T). Then the definition of ir, now
denoted by fr(Evalue, Euahdj) ... , (Etolue., Evaid.)(R), is constructed from the definition above simply
by substituting Evalueh(r) for value(rah), Evalidh(r) for valid(rdh), Evaluel(r) for value(r,), and
Evalidt(r) for valid(r.,). Note that this definition of the * operator is simply a more general
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version of the definition presented earlier, where N,, 1 < I < n, is assumed to be the ordered pair
of expressions (Na, Naj).

2.2.6 Historical Derivation

The historical derivation operator 6 is a new operator that does not have an analogous snapshot
operator. It replaces the time-stamp of each attribute in a tuple with a new time-stamp, where
the new time-stamps are computed from the existing time-stamps of the tuple's attributes. 6 is
effectively a combination of selection and projection on a tuple's attribute time-stamps.

Several functions, defined on the domains T and P(T), are used either directly or indirectly
in the definition of the historical derivation operator. Before defining the derivation operator itself,
we describe informally these auxiliary functions. Formal definitions appear in Appendix B.

FIRST takes a set of times from the domain P(T) and maps it into the earliest time in the set.

LAST takes a set of times from the domain P(T) and maps it into the latest time in the set.

PRED is the predecessor function on the domain 7. It maps a time into its immediate predecessor
in the linear ordering of all times.

SUCC is the successor function on the domain T. It maps a time into its immediate successor in
the linear ordering of all times.

EXTEND maps two times into the set of times that represents the interval between the first time
and the second time.

INTERVAL maps a set of times into the set of intervals containing the minimum number of
non-disjoint intervals represented by the input set. Each time in the input set appears in exactly
one interval in the output set and each interval in the output set is itself represented by a set of
times.

EXAMPLE. Consider the following tuple taken from the relation S6 defined previously:

r- ((Norman, {1,2,5,6}), (Texas, (7,8}))

then INTERVAL(valid(r(Name))) = {{1, 2}, (5., 6}}

INTERVAL(valid(r(State)))= {{7, 8}} 

Given these auxiliary functions, we can now define the historical derivation operator on his-
torical relations. Let R be an historical relation of m-tuples. Let Va, 1 < a < m, be temporal

functions involving

9



" Attribute names N1 , ... , N,,;

" Constants from the domain I of non-disjoint intervals defined in Appendix B;

" Functions FIRST, LAST, and EXTEND; and

" Set operators U, n, and -;

and let G be a boolean function involving

" Temporal functions, as just described;

" Relational operators <, =, and >; and

" Logical operators A, v, and -.

The functions G and V., 1 < a < m, are always evaluated for a specific assignment of non-
disjoint intervals to attribute names N1 , ... , Nm. G evaluates to either true or false and V,
evaluates to an element of )(T). For a tuple r, r E R, and intervals IN,, I < c < m, 'N. E
INTERVAL(valid(r,)), we evaluate G(IN,, ... , IN,.) by substituting IN, for all occurrences of
N, in G. Likewise, we evaluate Va(IN, ... , IN) by substituting IN. for all occurrences of N,
in Va. If any one of r's attribute values has a disjoint time-stamp, there will be multiple distinct
evaluations of G (and V,) for r, one for each possible assignment of intervals to attribute names,
each resulting in a value of true or false for G (and a set of time quanta for V.).

We can now define the derivation of the historical relation R, denoted 8 G, V,,.... V. (R), as

5G, 1 v,v. (R) {u'I3r, (rE R

A Va, <a < m,

(value(ua) = value(ra)
A (Vt, t E valid(Ua),

31 N, ... 31N=, (IN, E INTERVAL(valid(ri)) A

A IN. E INTERVAL(valid(rm))

A G(IN, ..., IN,.)

A tE Va(IN,, ... , IN)

)
)

A (VIN, VIN,,,, (IN. E INTERVAL(valid(r)) A .

A IN , E INTERVAL(valid(r,,))

AG(IN, ... , IN-)),

Va(IN, ., IN,,) C valid(ua)

10
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A 3a, 1 < a < m A valid(ua) 0

For a tuple r, r E R, the historical derivation operator determines new time-stamps for r's at-
tributes. The historical derivation function first determines all possible assignments of intervals
to attribute names for which the boolean function G is true. For each assignment of intervals to
attribute names for which G is true, the operator evaluates V., 1 < a < m. The sets of times
resulting from the evaluations of V. are then combined to form a new time-stamp for attribute
Na. For notational convenience, we assume that if only one V-function is provided, it applies to
all attributes.

EXAMPLES.

6 (Namenstaten=Name, Name(S6) = { ((Phil, {1)), (Kansas, {1}))

((Norman, {1,2,5,6)), (Virginia, {1,2,5,6})), }

In this example, G is (Name r) State) = Name and V and V2 are both Name. A student tu-
pie s, s E S6, satisfies condition G if the student had at least one interval of enrollment (i.e.,
IName E INTERVAL(valid(s(Name)))) during which his home state (i.e, State) did not change
(i.e., ('INamen lState) = IName, where IState E INTERVAL(valid(s(State)))). The new time-stamp
for each attribute of a tuple that satisfies G for some assignment of intervals INa,e and Istate is
simply the union of the 'Name intervals from each assignment of intervals that satisfy G. In the
first tuple in S6 , there are three intervals, two assigned to the attribute Name ({11, {3, 4)) and
one assigned to the attribute State ({1,2,3)). From this tuple, we find that Phil was a resident of

Kansas during his first interval of enrollment (G({I}, {1,2,3)) = (1) n {1,2,3) Z {i)) but was
a resident of Kansas during only part of his second interval of enrollment (G({3,4), (1,2,3)) =
{3,4)n{1,2,3) # f3,4)). Hence, this tuple's attributes are assigned a time-stamp of {1} in the re-
sulting relation. From the second tuple in S6 we find that Phil was not a resident of Virginia during
his first interval of enrollment (G({I}, {4,5,61) = {} n {4,5,6} - {1) and lived in Virginia dur-
ing only part of his second interval of enrollment (G({3,4), {4,5,6)) = f3,4) n {4,5,6) : {3,4)).
Hence, the time-stamp for this tuple's attributes would be assigned the empty set in the result-
ing relation except the definition of the historical derivation operator disallows tuples whose at-
tributes all have an empty time-stamp. This tuple is therefore eliminated and does not appear
in the resulting relation. From the third tuple in S6 we find that Norman was a resident of Vir-

ginia during both of his intervals of enrollment (G({1,2), {1,2)) = {1,2) n {1,2) / {1,2) and

G({5,6), {5,6)) = 5,6)n(5, 6 } (5,6). Hence, this tuple's attributes are assigned a time-stamp
of {1, 2, 5,6) in the resulting relation. From the fourth tuple in S6 we find that Norman was not a
resident of Texas at any time during his enrollment (G({1,2}, (7,8)) = {1,2} n (7,8) $ { 1, 2) and
G({5,6}, {7,8)) { (5,6} n {7,}8) {5,6}); this tuple is therefore eliminated from the resulting

relation.
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6 (NamenstatefNaMe A (NamnStater)0, NamenState(S6) = { ((Phil, {3}), (Kansas, {3}))

((Phil, {4}), (Virginia, {4})) }

A student tuple a, s E $6, satisfies condition G if the student had at least one interval of enrollment
during which his home state changed. The new time-stamp for each tuple that satisfies G for some
assignment of intervals INa,,e and Istote is the union of INo,, n Istai from each assignment of
intervals that satisfy G. From the first tuple in S6 we find that Phil had one interval of enrollment

V /
during which his home state changed (i.e., {3,4} n {1,2,3} 6 {3,4} and {3,4} n {1,2,3} # 0).
Hence, this tuple's attributes are assigned a time-stamp of {3,4} nf {1,2,3} = {3} in the resulting
relation. From the second tuple in Se we find that Phil had one interval of enrollment during which
his home state changed. Hence, this tuple's attributes are assigned a time-stamp of {4} in the
resulting relation. Note that Norman does not satisfy the restriction; his home state was the same
during his two periods of enrollment. Hence, the third and fourth tuples are eliminated from the
resulting relation. C

Note that the historical derivation operator actually performs two functions. First, it performs
a selection function on the valid component of a tuple's attributes. For a tuple r, if G is false when
an interval from the valid component of each of r's attributes is substituted for each occurrence
of its corresponding attribute name in G, then the temporal information represented by that
combination of intervals is not used in the calculation of the new time-stamps for r's attributes.
Secondly, the derivation operator calculates a new time-stamp for attribute N, 1 < a < m, from
those combinations of intervals for which G is true, using Va. If Vi, ... , Vm are all the same
function, the tuple is effectively converted from attribute time-stamnping to tuple time-stamping.

The derivation operator is necessarily complex because we allow set-valued time-stamps; it
would have been less complex if we had disallowed set-valued time-stamps. Then the derivation
operator could have been replaced by two simpler operators, analogous to the selection and projec-
tion operators, that would have performed tuple selection and attribute projection in terms of the
valid components, rather than the value components, of attributes. But, as we will see in Section 4,
disallowing set-valued time-stamps would have required that the algebra support value-equivalent
tuples, which would have prevented the algebra from having several other, more highly desirable
properties.

2.3 Aggregates

Aggregates allow users to summarize information contained in a relation. Aggregates are catego-
rized as either scalar aggregates or aggregate functions. Scalar aggregates return a single scalar
value that is the result of applying the aggregate to a specified attribute of a snapshot relation.

Aggregate functions, however, return a set of scalar values, each value the result of applying the
aggregate to a specified attribute of those tuples in a snapshot relation having the same values for
certain attributes. Database management systems based on the relational model typically provide
several aggregate operators. For example, Ingres [Stonebraker et al. 19761 provides a count, sum,

12



average, minimum, maximum, and any aggregate operator. Ingres also provides two versions of the

count, sum, and average operators, one that aggregates over all values of an attribute and one
that aggregates over only the unique values of an attribute.

Several researchers have investigated aggregates in time-oriented relational databases IBen-

Zvi 1982, Jones et al. 1979, Navathe & Ahmed 1986, Snodgrass, et al. 1987, Tansel, et al. 1985).
Their work reflects the consensus that aggregates when applied to historical relations should return

not a scalar value, but a distribution of scalar values over time. Jones, et al. also introduced the

concepts of instantaneous aggregates and cumulative aggregates. Instantaneous aggregates return,
for each time t, a value computed only from the tuples valid at time t. Cumulative aggregates
return, for each time t, a value computed from all tuples valid at any time up to and including

t, regardless of whether the tuples are still valid at time t. Note that a time t has meaning only
when defined in terms of the time granularity. Hence, instantaneous aggregates can be viewed as

aggregates over an interval whose duration is determined by the granularity of the measure of time

being used. Others have generalized the definition of instantaneous and cumulative aggregates

aby introducing the concept of moving aggregation windows [Navathe & Ahmed 19861. For an

aggregation window function u; from the domain T into the non-negative integers, an aggregate

returns, for each time t, a value computed from tuples valid either at time t or at some time in

the interval of length w(t) immediately preceding time t. Hence, an instantaneous aggregate is

an aggregate with an aggregation window function w(t) = 0 and a cumulative aggregate is an

aggregate with an aggregation window function w(t) = 00.

Klug introduced an approach to handle aggregates in the snapshot algebra [Klug 1982). His

approach makes it possible to define aggregates in a rigorous way. We use his approach to define
two historical aggregate functions for our algebra:

9 A, that calculates non-unique aggregates, and

0 AU, that calculates unique aggregates.

These two historical aggregate functions serve as the historical counterpart of both scalar aggregates
and aggregate functions.

The historical aggregate functions must contend with a variety of demands that surface as

parameters (subscripts) to the functic.ns. First, a specific aggregate (e.g., count) must be specified.

Secondly, the attribute over which the aggregate is to be applied must be stated and the aggregation
window function must be indicated. Finally, to accommodate partitioning, where the aggregate is

applied to partitions of a relation, a set of partitioning attributes must be given. These demands
complicate the definitions of A and AU, but at the same time ensure some degree of generality to
these operators.

For both definitions, let R be an historical relation of m-tuples over the relation scheme

=R {Ni, ... , Nm}. Also let a, cl, ... , c,, be distinct integers in the range 1 to m and Q be an
historical relation over the relation scheme )IQ, with the restrictions that .MQ C AIR and {N", Ne,

Nc,, } C .Q. Finally, let X = {Nc,, ... , No, }. If X is empty, our historical aggregate functions
simply calculate a single distribution of scalar values over time for an arbitrary aggregate applied

to attribute N. of relation R. If X is not empty, our historical aggregate functions calculate, for

Uf. N 1



each subtuple in Q formed from the attributes X, a distribution of scalar values over time for an
arbitrary aggregate applied to attribute N. of the subset of tuples in R whose values for attributes
X match the values for attributes X of the tuple in Q. Hence, X corresponds to the by-list of an
aggregate function in conventional database query languages. Assume, as does Klug, that for each
aggregate operation (e.g., count) we have a family of scalar aggregates that performs the indicated
aggregation on R (e.g., COUNTN,, COUNTN 2 , ... , COUNTNS where COUNTN., 1 < a < m, counts the
(possibly duplicate) values of attribute N. of R). We will define our historical aggregate functions
in terms of these scalar aggregates.

2.3.1 Partitioning Function

Before defining the historical aggregate functions A and AU, we define a partitioning function that
will be used in their definitions.

PARTITION(R, q, t, w, Na, X) a

{u 'm (3r), (r E R A Vt, 1 < 1 < n, vaue(r,,) = value(q,)

A Vd, 1 < d < m, value(ud) = value(rd)

A Vd, 1 < d < m,

((Vt', t' E valid(ud),

3Id, (Id E INTERVAL(valid(rd))

At - w(t) < 1 - (Id -nEXTEND(1, t) #0)

A t - w(t) ! 1 - (Id n EXTEND(t - w(t), t) #0)

A t' E Id

)
)

A (VId, (Id E INTERVAL(valid(rd))

A t - w (t) < I - (Id n EXTEND(1, t) #6 0)

A t - w(t) _ I - (Id n EXTEND(t - w(t), t) # 0))

Id c valid(u,)

A valid(u,) # 0
" V1, 1 < 1 < n, valid (u,,) 0

where q E Q, t E T, w is an aggregation window function, and 1 < a < m. This function retrieves
from R those tuples that have the same value component for attribute Ne,, I < I < n, as q and
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have time t or some time in the interval of length w(t) immediately preceding t in the time-stamp
of attributes N., N, ,..., and N,.. Note that the time-stamp of attribute Nd, 1 _ d < m, in the
resulting relation is constructed from those intervals in the time-stamp of attribute Nd in R that
contain time t or some time in the interval of length w(t) immediately preceding t. The predicates
t - w(t) < 1 - --.. and t - w(t) 2! 1 --- .-. are used here to ensure that PARTITION is well-defined
as EXTEND is defined only for elements in the domain T.

EXAMPLES.

PARTITION(S6 , (), 5, 0, Name, 0)= { ((Norman, {5,6}), (Virginia, {5,6}))

((Norman, (5,6'), (Texas, 0))}

Because time 5 is specified and the aggregation window function, denoted by zero, is the constant
function w(t) = 0, tuples are selected whose time-stamp for attribute Name overlaps time 5.
Only the third and fourth tuples in S6 satisfy this requirement. The partitioning function here
effectively returns the tuples for those students who were enrolled in school at time 5. Note that
the time-stamp of each attribute in the selected tuples has been restricted to the interval from the
attribute's original time-stamp overlapping time 5, if any.

PARTITION(S6 , ((Phil, {1,3,4}), (Virginia, {4,5,6})), 5, 0, Name, {State})=

{ ((Norman, {5,6}), (Virginia, {5,6})) }

where Q is here assumed to be S6 . Tuples are selected for those students who were enrolled in
school and a resident of Phil's state (Virginia) at time 5. Only the third tuple in S6 satisfies this
requirement. Although Phil was a resident of Virginia at time 5, he was not enrolled in school at
time 5. Hence, the second tuple in S6 is not included in this partition.

PARTITION(S0, ((Phil, {1,3,4}), (Virginia, {4,5,6})), 5, 1, Name, {State})--

{ ((Phil, {3,4}), (Virginia, {4,5,6}))

((Norman, {5,6}), (Virginia, {5,6}))

Here tuples are selected for those students who were enrolled in school and a resident of Virginia
within a year (w(t) = 1) of time 5. Both the second and third tuples in Sr satisfy this requirement.

The second tuple in S6 is now included in the partition because Phil was a resident of Virginia and
enrolled in school at time 4. 0

2.3.2 Non-unique Aggregates
'.

The historical aggregate function A calculates, for each tuple in Q, a distribution of scalar values
over time for an arbitrary aggregate applied to attribute Na of the subset of tuples in R whose
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value component for attribute Nt, I < I < n, matches the value component for attribute N,, of
the tuple in Q. If X is empty, A simply calculates a single distribution of scalar values over time
for the aggregate applied to attribute N. of R. If we let f represent an arbitrary family of scalar
aggregates and w represent an aggregation window function, then we can define A on the historical
relations Q and R, denoted by A1 . ., N., x(Q, R), as

A,, N.,x(Q, R) -

0 , ET(urr...} ({q II ( {t}) q E Q

A t - w (t) < 1-. (valid(q.) n EXTEND(1, t) 0

AV1, 1<1< n,

valid(q ,) n EXTEND(1, t) 0 0)

A t - w(t) 1 -* (valid(q.) n EXTEND(t - w (t), t) 0

AVI, 1 <1 < n,

valid(q,,) n EXTEND(t - w(t), t) $ 0)

A y = fN.(q, t, PARTITION(R, q, t, w, N., X))

where "n" denotes concatenation and N... is the attribute name assigned the aggregate value
(y, {t}). If X is not empty, function A first associates with each time t the partition of relation Q
whose tuples have t, or a time in the interval of length w(t) immediately preceding t, in the valid
component of attributes N., Ne,, ... , and N,. For each of these partitions, A then constructs a set
of historical tuples. Each tuple in the set contains all the attributes X of a tuple q in the partition
and a new attribute. This new attribute's valid component is the time t corresponding to the
partition and its value component is the scalar value returned by the aggregate fN., when fN. is
applied to the partition of R whose tuples have value components that match q's value components
for attributes X and whose valid components for attributes N., Nc,, ... , and N,. overlap either t
or the interval of length w(t) immediately preceding t. Then A performs an historical union of the
resulting sets of historical tuples to produce a distribution of'aggregate values over time for each
tuple in Q. If X is empty, A constructs for each time t an historical relation that is either empty or
contains a single tuple. If the valid component of attribute N, of no tuple r in R overlaps t or the
interval of length w(t) immediately preceding t, then the historical relation is empty. Otherwise,
the historical relation contains a single tuple whose valid component is the time t and whose value
component is the scalar value returned by the aggregate fN, when fN is applied to the partition
of R whose tuples have a valid component for attribute N. that overlaps either t or the interval of
length w(t) immediately preceding t. Then A performs an historical union of the resulting sets of
historical tuples to produce a single distribution of aggregate values over time.

Note that a tuple and a time are passed as parameters to the scalar aggregate fN., along with
a partition of R, in the definition of A. Although most aggregate operators can be defined in terms
of a single parameter, the partition of R, the additional parameters are present because aggregates
that evaluate to events or intervals, one of which is defined in Section 3.3, require them.
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EXAMPLES. ACOUNT, O, State, 0(iState(S6), $6)= { ((1, {3,4,7,8})))

((2, {1,2,5,6})) }

The function A computes the number of states in which enrolled students resided. Because w(t) = 0
and the time granularity of S6 is a semester, the resulting relation represents aggregation by
semester. Hence, the aggregate is in effect an instantaneous aggregate. For the interval {1,2},
there were two states (Kansas in the first tuple and Virginia in the third tuple). For the interval
{3,4}, there was one state (Kansas in the first tuple at time 3 and Virginia in the second tuple at
time 4). For the interval {5,6}, there also was only one state (Virginia), but it appeared in both
the second and third tuples. It was counted twice because the scalar aggregates embedded within

A aggregate over duplicate values. For the interval {7,8}, there was only one state (Texas in the
fourth tuple).

ACOUNT, 1, State, 0.(iStat(S6), S6)= { ((1, {8,9}))

((2, {1,2,3,4,5,6}))

((3, {7})) }

Again, A computes the number of states in which enrolled studtents resided, but now w(t) = 1.
Hence, the resulting relation now represents aggregation by year (assuming two semesters per year).
Although nine does not appear in the time-stamp of attribute State in any tuple in S6 , a count of
one is recorded at time 9 because a tuple, the fourth tuple in S6 , falls into the aggregation window
at time 9.

ACOUNT, , State, 0(iStat,(S6), S6) ((2, {1, 2, 3}))

((3, {4,5,6}))

((4, {7,8,...})) }

Now, with w(t) = oo, A computes a cumulative aggregate of the number of states in which enrolled
students resided.

ACOUNT, 0, Name, (State}(S6, ,)= { ((Kansas, {1, 2, 3}), (1, {1, 2,3}))

((Virginia, {1,2,4,5,6}), (1, {1,2,4}))

((Virginia, {1,2,4,5,61), (2, (5,61))

((Texas, {7,8}), (1, {7,8})) }

Here, A computes the instantaneous aggregate of the number of enrolled students who resided in
each state. In effect, the aggregate is computed for each subset of tuples in S6 having the same
value for the attribute State. For example, the first tuple is computed by selecting all the tuples
in S6 with a state of Kansas and then performing the aggregate on this (smaller) set. 0

.17
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2.3.3 Unique Aggregates

The function A allows its embedded scalar aggregates to aggregate over duplicate attribute values.
We now define an historical aggregate function AU, identical to A with one exception; it restricts
its embedded scalar aggregates to aggregation over unique attribute values. We define AU on the
historical relations Q and R, denoted by AUf,11 , N., X(Q, R), as

AU f,,., No, x (Q, R) -

O~t. tE T(*Xu{N ...) ({q f(y, {t)I q E Q
A t - w(t) < 1 (valid(q.) n EXTEND (1, t) $6 0

AVl, 1 <!< n,

valid (qc,) n EXTEND(1, t) $ 0)

A t - w(t) 1 -1 (valid(q.) n EXTEND(t - w(t), t) 7 0

AVI l<l<n,

valid(q,,) n EXTEND(t - w(t), t) 0)

A y -= fN.(q, t, 6btrue, t(N.(PARTITION(R, q, t, w, N , X))))

This definition differs from that of A only in that the historical projection on attribute Na of
PARTITION(...) followed by the historical derivation eliminates duplicate values of the aggre-
gated attribute before the scalar aggregation is preformed.

EXAMPLE. aUCOUNT, State,0(frStat(S6), S6 )= { ((1, {3,4,5,6,7,8}))

((2, {1,2})) }

This relation differs from the non-unique variant only during the interval {5,6}. Here, Virginia
is correctly counted only once, even though there are two tuples valid during this interval with a

state of Virginia. 0

2.3.4 Expressions in Aggregates

The functions A and AU allow expressions to be aggregated and support aggregation by arbitrary
expressions. Let Eaggregate be an arbitrary expression involving u historical aggregate functions.
Also, assume that the v'h historical aggregate function applies the scalar aggregate f, to attribute
Na. where the aggregation window function is w, and the partitioning attributes are X". Then
the definition of A, now denoted by

Af 1, .... .. . ..... N.,x,.... X...,Eaggregate(Q, R),
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is constructed from the definition of A above simply by substituting y = Eaggregate' for y =
fN.(. .. ). Eaggregate' is Eaggregate where each reference to the vt aggregate has been replaced
by the expression f.,,.(q, t, PARTITION(R, q, t, WUI Na,., X,)). With these changes,

allows expressions to be aggregated. AU can be modified similarly.

If A and AI are to support aggregation by arbitrary expressions, changes must be made to
the definitions of PARTITION, A, and AV given above. First, let Evaluel, 1 < 1 < o, be an
expression involving the attribute names N,,, ... , Ne,. Evalue, is evaluated for a tuple r, r E R,
by substituting the value components of the attributes of r for all occurrences of their corresponding
attribute names in Evaluel. Secondly, let X = {Evaluei, ... , Evalue,} and d1 , ... , dp be
the distinct integers in the range 1 to m such that Nd,, 1 < h <_ p, appears in at least one
Evaluel, 1 < I < o. Then new definitions of PARTITION, A, and AU are constructed from the
definitions above simply by substituting the predicate Vl, 1 < I < o, Evaluel(r) = Evaluel(q) for
the predicate Vt, 1 < I < n, vaiue(r ) = value(q ,) and the predicate Vl, 1 < l < p, valid(ud) 5 0
for the predicate Vt, 1 < 1 < n, valid(u,,) - 0 in the definition of PARTITION and substituting
p for n and valid(qd,) for valid(q,,) in the definitions of A and A-U. With these changes, A and AU
support aggregation by arbitrary expressions.

2.4 Preservation of the Value-equivalence Property

Theorem 1 The operators C, *, 6<, 3, *, ., A, and AU all preserve the value-equivalence property
of historical relations.

PROOF. For the operators C, -, x, , and 6 we show that the contrapositive of the theorem
holds, that is, if there are value-equivalent tuples in an operator's output relation, then there are
value-equivalent tuples in at least one of its input relations. For the operators fr, A, and A-U, we
show by contradiction that there cannot be value-equivalent tuples in their output relations.

Case 1. 0. Assume that Q 0 R contains at least two value-equivalent tuples. From the definition
of 0, each tuple in Q 0 R has a value-equivalent tuple in Q, R, or both. If two value-equivalent
tuples &I and C12 in Q 0 R do not have a value-equivalent tuple in R, then both are tuples in Q.
Similarly, if they do not have a value-equivalent tuple in Q, then both are tuples in R. If they
have a value-equivalent tuple in both Q and R, then each was constructed from a value-equivalent
tuple in Q and a value-equivalent tuple in R. If both fs1 and U2 had been constructed from the
same tuple in Q and the same tuple in R, then is1 and ui2 would be, by definition, the same tuple.
Hence, they were constructed from different value-equivalent tuples in Q, R, or both.

Case 2. - Assume that Q - R contains at least two value-equivalent tuples. From the definition
of -, each tuple in Q R has a value-equivalent tuple in Q but not in R or a value-equivalenm tuple
in both Q and R. If two value-equivalent tuples is1 and i42 in Q - R do not have a value-equivalent
tuple in R, then both are tuples in Q. If they have a value-equivalent tuple in both Q and R,
then each was constructed from a value-equivalent tuple in Q and a value-equivalent tuple in R.

If both is1 and i2 had been constructed from the same tuple in Q and the same tuple in R, then
fil and i12 would be, by definition, the same tuple. Hence, they were constructed from different
value-equivalent tuples in Q, R, or both.
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Case 3. x. Assume that Q x R contains at least two value-equivalent tuples. From the definition
of , each tuple in Q )Q R is constructed from a tuple in Q and a tuple in R. If two value-equivalent
tuples isj and ;J2 in Q R had been constructed from the same tuple in Q and the same tuple in
R, then fl and fi2 would be, by definition, the same tuple. Hence, they were constructed from
different value-equivalent tuples in Q, R, or both.

Case 4. &. Assume that &F(R) contains at least two value-equivalent tuples. From the definition
of &, each tuple in &F(R) is a tuple in R. Hence, any two value-equivalent tuples in &F(R) are also
tuples in R.

Case 5. f. Assume that *rN.,,..., N.. (R) contains at least two value-equivalent tuples. For any
two such tuples there will be at least one time that appears in the time-stamp of an attribute
of one tuple but not the other tuple; otherwise, they would be identical. Hence, let isi and i

be two value-equivalent tuples in *N.J .... N.n (R) such that there is a time t in the time-stamp of
attribute N 1, 1 < 1 < n, of 41 but not &2. From the first clause of the definition of i, there is
a tuple r, r E R, that has t in the time-stamp of attribute N,, and the same value for attributes
N. 1, ... , Na,, as u1 . But, from the second clause of the definition, the time-stamp of attribute
Na, of tuple r is a subset of the time-stamp of attribute N., of fi2 , as r also has the same value for

* attributes Nal, ... , N.. as fi2 . Hence, t is in the time-stamp of attribute N., of f12 , contradicting
the assumption that t is in the time-stamp of attribute N., of ii but not f12 . Similarly, we arrive at
a contradiction if we assume that there is a time t in the time-stamp of attribute N,1 , I < I < n,
of i12 but not fis. Hence, it, and f12 have identical attribute time-stamps, which implies that they
are the same tuple, contradicting the assumption that rN. -.... Nan (R) contains at least two value-
equivalent tuples. Note that the output relation of i, unlike the output relations of 0, - x and
&, would not contain value-equivalent tuples even if there were value-equivalent tuples in its input
relation.

Case 6. S. Assume that bG, v ... , v. (R) contains at least two value-equivalent tuples, 61 and 6 2 .
From the definition of 6, each tuple in G, v1 ,. .. v(R) is constructed from one value-equivalent
tuple in R. If 41 and 12 were constructed from the same value-equivalent tuple r, r E R, then they
would be the same tuple, as 6 requires not only that every time t in the time-stamp of attribute
N., 1 < a < m, of either di or 42 be in Va(...) and satisfy G(...) for some assignment of intervals
from the time-stamps of r's attributes to attribute names but that V (...) be a subset of the
time-stamp of attribute Na of both 4 and 42. Hence, d, and 42 were constructed from different

0 value-equivalent tuples in R.

Case 7. A. Assume that 'Af w, N, x(Q, R) contains at least two value-equivalent tuples. From
Case 1 above, if Af, ,, N., x(Q, R) contains value-equivalent tuples, then the input relation to A's
outermost 0 operator contains value-equivalent tuples. But, this relation is the output of k, whose
output relation was shown in Case 5 above never to contain value-equivalent tuples. Hence, our
assumption that A1, .. N., X(Q, R) contains at least two value-equivalent Luples is contradicted.

Case 8. AU. Simply replace A with AU in Case 7. 3
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2.5 Summary

We first introduced historical relations, in which attribute values are associated with set-valued
time-stamps. We then defined eight historical operators:

* Five operators are analogous to the five standard snapshot operators: union (6), difference
(-), cartesian product (k), selection (&), and projection (Jr).

* Historical derivation (6) effectively performs selection and projection on the valid-time dimen-
sion by replacing the time-stamp of each attribute of selected tuples with a new time-stamp.

* Aggregation (A) and unique aggregation (AU) serve to compute a distribution of single values
over time for a collection of tuples

We should mention several other operators that can exist harmoniously with these eight op-
* erators. Intersection quotiern ( natural loin (x), and 6-join :) can all be defined in

terms of the five basic operators. Lr: an identic.ai fastion to the definition of their snapshot coun-
terparts Finally. the historicai roiiback operawr d) defhried eisewhere McKenzie & Snodgrass
19S7A , serves to gerieralize the alze-,ra u. rianiie t,.rnp ,ral relations incorporating both valid and
t r ;-ir sact yr) .mei[l
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tuple became valid (i.e., From) and the time when the tuple became invalid (i.e., To). Also unlike
our historical algebra, TQuel allows value-equivalent tuples in a relation but assumes that value-
equivalent tuples are coalesced (i.e., tuples with identical values for the explicit attributes neither
overlap nor are adjacent in time). As we will see shortly, it is possible to convert the embedded,
coalesced snapshot relations used in TQuel's formal semantics to historical relations.

3.1 TQuel Retrieve Statement

Assume that we are given the k snapshot relations RI, ... , R, whose schemes are respectively.

M ={N 1 1, ... , Nl,,.,, From1 , Toi}

k = {Nk, ... Nk,,.,, Fromk, To}

For notational convenience, we associate "  with TQuel relations, tuple variables, and ex-
pressions to differentiate them from their counterparts in the historical algebra and assume that
N 1,1 , --. , Nk~m are unique. Furthermore, let il, i2, ... , i, be integers, not necessarily distinct,
in the range 1 to k and a,, 1 < I < n, be a distinct integer in the range 1 to mi,. Then, the TQuel
retrieve statement has the following syntax

range of ri is Ri

U' range of rk is Rk

retrieve into Rk+i(Nk+1, 1 .N,, . . . . Nk+, n, an)(1)

valid from v to X

where L

when r

This statement computes a new relation Rk+I over the relational scheme

.)AVkI = {Nk+, k+,n, Fromk+i, TOk+l}

Its tuple calculus statement has the following form
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( E R ^ " ... ^ kE

A u(Nk+1,,) = A, (NA,,.) ^A... A U(N+ 1,n) = r ,.

A u(Fromk+l) = V.((r(Fromi), rI(Tol)), ..., (rk(Fromk), r(Tok)))

A u(Tok+,) = ,xr(Fromi), ri(Toi)), ... , (r'(Fromk), rk(Tok))) (2)

A Before(u(Fromk+1), u(Tok+l))

%A (r,( ,.), ... , r'(N.,,))

A r,((r'(From1 ), r'(Toi)), ... , (r'(From,), r'(Tok)))

where Before is the "<" predicate on integers, the ordered pair (r (From,), r (To1 )), 1 < i < k,
represents the interval [r (Fromi), r (To1 )), and V , V , V , and r' are the denotations described
below of 0, v, X, and r respectively.

%'' is obtained by replacing each occurrence of an attribute reference r .Nj,0 , I < i < k, I <
a < i, in P with r,(N,a) and each occurrence of a logical operator with its corresponding logical
predicate. That is,

r ..N,.o - r,(N,. ),

and -- A,

or -v, and

not --* -.

, ard o are obtained by replacing each occurrence of a tuple variable r:' in v and X with
the ordered pair (r.(From), r.(Toj)) and each occurrence of a temporal constructor with a corre-
sponding function. That is,

r -* (r'(From), r!(To))

begin of I - beginof(I),

end of I - endof (I),

I, overlap 12 -- overlap(I, 12), and

11 extend 12 -- extend(II, 12)

where beginof, endof, overlap, and eztend are functions on the domain I. Formal definitions for

these functions are presented elsewhere [Snodgrass 19871.

r' is obtained by replacing each occurrence of a logical operator in r with its corresponding
logical predicate according to the rules given for its replacement in tP, replacing each occurrence of
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a tuple variable or temporal constructor according to the rules given for their replacement in v and
X, and replacing each occurrence of a temporal predicate operator with an analogous predicate on

intervals. That is,

11 precede 12 -. precede(II, 12),

It overlap 12 - overlap(II. 12), and

I, equal I. -- equailli. I2)

where precede. overlap and equia4 are predicates on the domain 4' Formal definitions for these

predicates are presentel ,ise%*nere 'noigrwwa 1987

3.2 ('orreispnindeni ^-:th the Historical Algebra

S.M F, -,mprl r the -;r-.. *- '., n the ritoricaii aigebra presented in Section 2, we

, irst -PI&Le -Pt.t. -111 r. I A .. .. . xr r s .ri the new TQuel clauses, and finally the
il retre ' *ftsate e'- - . S ,: . . , .

Deinit;,,n I " . . .. .... , %i *mbeaJij snapshot relation over the

-,tit.lr \, .e . .. ' , mtat.tl,'id .... . q tvadd lin our historical

r2

.1N.

- .XrE ND -n !% I('(' r o T)i valtd(u(.NV)))

I'he rt Ia'is- :-'. * ,.-. - "Ltt -At h tuple in T(t1?' has at leas t one value-equivalent
tupie in H i Fh j jer t .- r ,i i' rtt itri ,n.sures that e-ach subset of value-equivalent tuples

in H is represented '&.' , n T( i e') Note also that the same time-stamp is assigned
to eat h attribute A ' :" .r Tf H" 'his time-stamp is simply the union of the time-stamps of

the tuple s value-eq(i'aent !tiipies in R' leause 'TQuel assumes that value-equivalent tuples are

coalesced, the time-stamp Jf each tuple in R' is a distinguishable interval of time in the attribute

* time-stamps of its value-equivalent , ,unterpart in T( W), as shown by the following lemma.
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Lenmina 1 Vt, r E T (AT), Va, 1 < a < m, VI, I E INTERVAL (valid(t (Na))),

3r', (r' E R'

A VC, 1 < c < m, value(r(N.)) = '(N.,)

A I = EXTEND(r'(From), SUCC(r'(To)))

* )

PROOF. Apply the definitions of coalescing and INTERVAL to T and simplify. I

Definition 2 We define a m+2-tuple TQuel relation R' and a rn-tuple relation R in our historical
algebra to be equivalent if, and only if, R = T(R'). In addition, we define a TQuel query and an
expression in our historical algebra to be equivalent if, and only if, they evaluate to equivalent
relations.

Let 'ik, 0, and PX be the denotations in our algebra of k, v, and X respectively. Cp. is obtained
by replacing each occurrence of r(Nj,4 ), 1 < i < k, 1 < a < m, in ' with Ni,,. ', and Dx are
obtained by replacing each occurrence of an ordered pair (r (Fromi), r (To1 )), 1 < i < k, in V
and V with N, 1 and each occurrence of a TQuel function with its algebraic equivalent. That is,

(r (From1 ), r (Toj)) - N,

beginof( I) - FIRST(I),

endof(I) -* LAST(I),

overlap(11 , 12) -- 11 n 12, and

1extend(I, 12) -- EXTEND(FIRST(11 ), LAST(12 )).

Also let r, be the denotation in our algebra of r. ', is obtained by replacing each occurrence
of an ordered pair (r (Fromj), r (To,)) and each occurrence of a TQuel function in r, with its
algebraic equivalent according to the rules above and each occurrence of the predicates precede,
overlay, and equal with its algebraic equivalent. That is,

precede(I, 12) -. LAST(I1 )< FIRST(12 ) V LAST(I 1) = FIRST(12 ),

overlap(I, 12) -- 11 n 12 $ 0, and

equal(h, 12) -- 1 = 12.

Note from the definition of T(R') that a tuple in T(R') has the same time-stamp for each of its
attributes. Hence, although we require that each occurrences of an ordered pair (r'(Frornj), r!( To,))
in V , V, and r, be replaced with the same attribute name (i.e., Ni, 1 ), we could have specified
any attribute of relation R-.

We will need the following two lemmas in the equivalence proof to be presented shortly.
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Lerrma 2 ',, 1 ×, and r, are semantically equivalent to V , VZ , and r, respectively. That is,
the result of evaluating V,, V, and r' for tuples r!, r E R, 1 < i < k is the same as the result
of evaluating $x, 'I, and r, for che intervals i, Ii = EXTEN'D(r'(Fromi), SUCC(r(Toi)))
substituted for the attribute name Ni,1 .

PROOF. The semantic equivalence follows directly from the definitions of the functions used in
V, V, and r, [Snodgrass 19871. I

Lemma 3 t E EXTEND(O'Z(...), SUCC(A(...))) -, Before(01(...), .)

PROOF. It follows directly from the definition of EXTEND, given in Appendix B, that t E
EXTEND( (...), SUCC(V(...))) implies V(..) < t < -V(")), which in turn implies
Before('(...), V(...)) I

Having defined the algebraic equivalents of TQuel relations and expressions in the new TQuel
clauses, we can now define the algebraic equivalent of a TQuel retrieve statement. Every Quel
retrieve statement (a target list and where clause) is equivalent to an algebraic expression that
represents cartesian product of the relations associated with tuple variables, followed by selection
by the where-clause predicate, and then projection on the attributes in the target list. Similarly,
every TQuel retrieve statement is equivalent to an algebraic expression that represents cartesian
product of the referenced relations, followed by selection by the where-clause predicate, historical
derivation as specified by the when and valid clauses, and then projection on the attributes in the
target list.

Theorem 2 Every TQuel retrieve statement of the form of (1) found on page 22 is equivalent to
an expression in our historical algebra of the form

R = lrN,,.., .. (6r,, EXTEND(O., SUCC(§,))(&*, (T(R') < ... T(R')))). (3)

*i PROOF. To prove that R and 1~+, are temporally equivalent, we must show that R = T(R'+1 ).
From set theory and the definition of T, it follows that R and T(R'+,) are equal if, and only if,
the following holds.

(Vr, rE R, Va, I < a < n, Vt, t E valid(r(Na)),

.rk'+i, (r'+, E Rk'+1

A Vc, 1 < c < n, value(r(N,)) = rk+,(N.+,,)
A t E EXTEND (r+ (+Fromk+I), SUCC(r'+,(Tok+l)))

) (4)

A (Vr, r E R, Vrk+,, (rl+l E /l+l A Va, 1 < a < n, rk+(Nk+la) = value(r(Na))),
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Vc, 1 < c < n,

EXTEND(r+,(Fromk+l), SUCC(r'+1 (Tok+I))) _ valid(r(N,))

To prove the validity of (4), we show that the tuple calculus for R reduces to (4). First, construct
the tuple calculus statement for R from the definitions of the historical operators , b, 6, and *,
using straightforward substitution, change of variable, and simplification (i.e., the definition of
T(11)x ... xT(Rk) obtained from the operator is substituted for references to the historical
relation in the definition of &, etc.).

v ,,,,....Ni, .. (5r,, ]EXTIENDC., SUCCCO )#* ,CT(II).. T(,W))))

1 {r' (Vc, 1 5c <n, Vt, t Evaid (r(Nc)),

2 (3r,)... (3qk)(311) ... (31),

3 (rl E T(e) A.-. A rk E T( )

4 A Il E INTERVAL(valid(rl(Ni,1))) A...

5 A Ik E INTERVAL(valid(rk(N, 1)))

6 A VL, 1 < I < n, value(r(Ni)) = value(ri,(N,,a,))

7 A TO,(vaue(rj(Ni,i)), ... , value(rk(Nk,m4,))

8A r,(i, ... , k)

A t E EXTEND(P ,(, 1k), SUCC(×(Ii, ..., I)))

10 )) (5)
11 A ((Vrl )... (Vrk)(VI1) (VIk)

12 (rl E T(R') A... A rA:E T(R')

13 A Il E INTERVAL(valid(rI(N 1))) A

14 A IkE INTERVAL(valid(rk (NA, 1)))

15 A VI, 1 < I < n, value (ri, (Nj,1 a)) = value(r(Nj))

16 A ',, (value(r1 (N 1 . )), .. , value(rk(Nk,)))

17 A r, (i1, .. , )

18 )

19 Vc, 1 < c < n,

20 EXTEND(-T'(I', ... , I), SUCC(Px(Ii, ... , I))) C valid(r(N,))

21)

22 A (3c, I < c < n A valid(r(N)) 0)
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23 }

The three main clauses in the above calculus statement correspond to the three clauses in the
definition of k, which appears on page 8. The operator contributes the phrase rl E T(R') A... A
rk E T(R',) that appears in lines 3 and 12 of the calculus statement. The a operator contributes
the predicate found on lines 7 and 16 and the 6 operator contributes the predicates found on lines
4-5, 8-9, 13-14, and 17-20.

We now use the definitions and lemmas presented earlier, along with set theory, to reduce the
tuple calculus for R to (4). The first clause in (5), along with Lemma 1, implies that

Vr, r E R, Vc, 1 < c < n, Vt, t E vatid(r(Nc)),S(3r')... (3r),

(r E RA...Ar' E Rk

A Vt, 1 < 1 <n, value(r(NI)) = ,(.%...,)
A %PO(r'CNj., ... , ,'(N .k , } ) (6)

A r,(EXTEND(r' (From,), SUCC(r'(Tol))),

" EXTEND (r' (FromA), SUCC(r'(Tok))))

At E EXTEND(,I(EXTEND(r'(From,), SUCC(r'(Toj))), ...,
EXTEND(r'(From), SUCC(r'(To)))),

SUCC(Z x(EXTEND(r;(From1), SJCC(r1 (Toj))), ...,

EXTEND(r' (Fromk), SUCC(r'(Tok)))))

Applying Lemma 2 to (6) results in

Vr, r E R, Vc, 1 < c < n, Vt, t E valid(r(N.)),

(3r')... (3r'),

4" (r',RC A..A ERk

A Vt, 1 < 1< , value(r(N)) = , at)

A (r'(NI,,), ..., r(Nk,, )) (7)

A r',((r,(Fromi), ri(Toj)), , (r(Fromh), r,(Tok)))

A t E EXTEND(-' ((r(From1 ), r(Toi)), .. , (r(Fromk), r,(To1 ))),

SUCC(V ((r',{(From,), r(Tol)), .., (r8(From), r',CTok))))
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The third clause of (5) on page 27 implies that Vr, r E R, (3c)(3t), 1 < c < n, t E valid(r(N.)).
Hence, applying Lemma 3 and the tuple calculus statement for Rk+ 1 in (2) on page 23 to (7) results
in

VrrE R, Vc, 1 < c < n, Vt, t E valid(r(N,)),

A VI, 1 < I < n, vaiuc(r(Nj)) = r',+1 (Nk+1,,)

St EEXTEND(r', 1 (From), STJCC(r +(To)))
)

Thus, the first clause of (4) is shown to hold. A similar argument can be made, starting with the
second main clause of (5), to show that the second clause of (4) holds. Since (4) holds, R and R',+,
are equivalent and the historical algebra expression is equivalent to the indicated TQuel retrieve
statement. I

3.3 TQuel Aggregates

TQuel aggregates [Snodgrass, et al. 19871 are a superset of the Quel aggregates. Hence, each
of Quel's six non-unique aggregates (i.e., count, any, sum, avg, sin, and max) and three unique
aggregates (i.e., countU, sumU, and avgU) has a TQuel counterpart. The TQuel version of each
of these aggregates performs the same fundamental operation as its Quel counterpart, with one
significant difference. Because an historical relation represents the changing value of its attributes
and aggregates are computed from the entire relation, aggregates in TQuel return a distribution
of values over time. Hence, while in Quel an aggregate with no by-list returns a single value, in
TQuel the same aggregate returns a sequence of values, each assigned its valid times. When there
is a by-list, an aggregate in TQuel returns a sequence of values for each value of the attributes in
the by-list.

Several aggregates are only found in TQuel: standard deviation (stdev and stdevU), average
time increment (avgti), the variability of time spacing (varts), oldest value (first), newest value
(last), From-To interval with the earliest From time (earliest), and From-To interval with the
latest From time (latest).

Each TQuel aggregate has a counterpart in our historical algebra. The algebraic equivalents of
TQuel aggregates are defined in terms of the historical aggregate functions A and AU, which were
defined in Section 2.3. Before defining the algebraic equivalents of TQuel aggregates in the context
of a TQuel retrieve statement however, we consider the families of scalar aggregates that appear
as parameters to A and A'U in the algebraic equivalents of TQuel aggregates. Each aggregate in
one of these families of scalar aggregates returns, for a partition of historical relation R at time t,
the same value returned by its analogous TQuel scalar aggregate for a partition of relation R' at

time t, where R = T(R').

We define here the families of scalar aggregates that appear as parameters to A and A'U in the
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algebraic equivalents of the TQuel aggregates count, countU, first, and earliest. We present
these definitions to illustrate our approach for defining the families of scalar aggregates that appear
in the algebraic equivalents of TQuel aggregates. The approach can be used to define the farrulies
of scalar aggregates found in tb- Jgebraic equivalents of the other TQuel aggregates as well.
The aggregates count and countU -,ustrate how conventional aggregate operators, now applied
to historical relations, can be handled. The aggregate first is an example of an aggregate that
evaluates to a non-temporal domain such as character but uses an attribute's valid time in a way
different from the conventional aggregate operators. Finally, earliest illustrates an aggregate
that evaluates to an interval.

For the definitions that follow, let R be an historical relation of m-tuples over the relation
scheme . (N 1 , ... , N,,} and Q be an historical relation over an arbitrary subscheme of ii.

Although the scalar aggregate COUNT, introduced on page 14, is sufficient to define the algzbraic
equivalent of the TQuel aggregates count and countU for an aggregation window of length zero
(i.e., an instantaneous aggregate), it is not sufficient to define the algebraic equivalent of count
and countU for an aggregation window of any other length. Hence, we define another family of
scalar aggregates COUNTINTN., 1 < a < m, that accommodates aggregation windows of arbitrary
length by counting intervals rather than values.

COUNTINTN.(q, t, R) = JINTERVAL(valid(ra))I
rER

where N. is an attribute of both Q and R, q E Q, and t E T. Recal that INTERVAL, formally
defined in Appendix B, returns the set of intervals contained in its argument. Hence, COUNTINT
simply sums the number of intervals in the time-stamp of attribute Na of each tuple in R.

Next, we consider the TQuel aggregate first. This aggregate requires a family of scalar
aggregate functions FIRSTVALUEN., 1 < a < m, where FIRSTVALUEN produces the oldest value of
attribute N4 . That is,

FIRSTVALUEN.(q, t, R) E {u I R 0 0 -+ 3r, (r E R

A Vr', r' E R, FIRST(r(Na )) _ FIRST(r'(N))

A u = value(r(N4 ))

)
A R = 0 - = NULLVALUE(N)

}

where NULLVALU'E is an auxiliary function that returns a special null value for the domain
associated with its argument. Note that the set {u . ..} need not be a singleton set. If there are
two or more elements in the set, FIRSTVALUE returns only one element, that element being selected
arbitrarily. This procedure is the same as that used by the TQuel aggregate first to select the
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oldest value of an attribute when there are multiple values that satisfy the selection criteria. If R
is empty, FIRSTVALUE returns a special null value for the domain associated with attribute Na.

Finally, we define the algebraic equivalent of the TQuel aggregate earliest. Unlike other
TQuel aggregates, which produce a distribution of scalar values over time, earliest produces a
distribution of intervals over time. Defining an algebraic equivalent for this aggregate is slightly
more complicated owing to this distinction. We first introduce a family of auxiliary functions
ORDERINTN., 1 < a < m, which orders chronologically all distinguishable intervals in the
time-stamp of attribute N. for tuples of historical relation R.

S A ORDERINTN.(R) 4-* (Vr)(VI), (r E R A I E INTERVAL(valid(r(Na)))),

3v, 1 < v < ISI A S, = I

A Vv, 1 < v < ISI,

(3r)(31), (r E R A I E INTERVAL(valid(r(N,))) A S,, = 1)

Vv, 2< v< IS,

(FIRST(S-._) < FIRST(S,)

V (FIRST(Sj_) = FIRST(S) A LAST(S,,_i) < LAST(Sv)))

where S is a sequence of length ISI and S., is the tth element of S. Evaluating ORDERINTN.(R)
results in a sequence of the intervals appearing in the time-stamp of attribute N. of tuples in R.
The intervals are ordered from earliest starting time to latest starting time. When two or more
intervals have the same starting time, they are ordered from the earliest stopping time to the latest

. stopping time. The first clause states that each interval in the time-stamp of attribute N, of a
tuple in R appears in S, the second clause states that no additional intervals are present, and the
third clause provides the ordering conditions.

Now, we can define a family of scalar aggregate functions POSITIONN., 1 < a < m, where
POSITIONN. first identifies, for a tuple q and time t, the interval in the valid component of attribute
Na in q that overlaps t and then calculates the position of that interval in ORDERINTN.(R),
for an historical relation R. If no interval in the valid component of attribute Na overlaps t or the
interval is not in ORDERINTN,(R), POSITIONN. returns zero.

POSITIONN.(q, t, R) = u - ((3I)(3S), (I E INTERVAL(valid(q(Na)))

A 1 < v < IORDERINTN.(R)I

A S,, E ORDERINTN.(R)

A t E I A I = 5,,)
) -' a - "

A ((VI)(VS,), (I E INTERVAL(valhd(q(Na)))

A 1 < v < ORDERINTN.(R)
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Note that POSITION, unlike COUNTINT and FIRSTVALUE, requires parameters q and t, as well as R.

Now assume that we are given a family of scalar aggregate functions SMALLESTN., 1 < a < m,
where SMALLESTN produces the smallest value of numeric attribute N.. That is,

SMALLESTN.(q, t, R) = u - R 0 3-r, (r E R

A V', r' E R, value(r(Na)) valtse(r'(Na))

A u = vaiue(r(N4 ))
)

A R =0-u 0

The families of scalar aggregates POSITION and SMALLEST are both needed to define the algebraic
equivalent of the TQuel aggregate earliest for attribute Na of relation R'. First, POSITION is used
to assign each interval in the time-stamp of attribute N, of a tuple in T(R') to an integer repre-
senting the interval's relative position in the chronological ordering of intervals. Then, SMALLEST
is used to determine, from this assignment of intervals to integers, the times, if any, when each
interval was the earliest interval. If we assume an aggregation window function w(t) = 0 and an
empty set of by-clause attributes, the algebraic equivalent of the TQuel aggregate earliest for
attribute N. of relation R' is

ON4.. ,..44 , i=N...u..e, (ASMALLEST, 0, N, oo 'l ,(Rp n, Rpoaition) Rpoai ti on) (8)

over the scheme )447Lic,t {Near .tet, 1, Nearliest, 2} where

Rpositon = a Np..o.n od(A POSITION, ., N., 0(R, R)) (9)

over the scheme Rponton = {Nposition).

EXAMPLE. If we assume an aggregation window function w(t) = 0 and an empty set of by-clause
attributes, then earliest for attribute State of relation S6 is
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N~.2 (=N A,(A SMALLEST, 0, N...(..,, o.ition, Rpoition) X Rposition) =

{{ ((1, {1,2}), (1, {1,2})))

((2, {3}), (2, (1, 2,3}))

((3, {4,5,6}), (3, {4,5,6}))

((5, {7,8}), (5, {7,8})) }

where Rpoattion is

-. GNpo.,tin $0 o(APosITION, oo, State, 0 (S 6 , S6 )) -

{((1, (1, 2})) ,

." ((2, {1,2, 3)))

((3, {4,5,6}))

((4, {5,6})))

((5, {7,8})) } o

As illustrated in this example, the algebraic equivalent of earliest is a two-attribute historical
relation. The valid component of the first attribute is the time when the valid component of the
second attribute was the earliest interval. Also note that the value component of both attributes
is the position of the valid component of the second attribute in ORDER.INTN.(R).

3.3.1 TQuel Aggregates in the Target List

In Section 3.2 we showed the algebraic equivalent of the TQuel retrieve statement without aggre-
gates. We now show the algebraic equivalent of a TQuel retrieve statement with aggregates in its
target list. We consider changes to the algebraic expression to support one non-unique aggregate
in the target list only; similar changes would be needed for each additional aggregate in the target
list.

Once again assume that we are given the k snapshot relations R , ..., Rk whose schemes are

respectively,

Ri = {N,1, ... , Ni,mj, From,, To,)

'I...

,= A.= .. . , Nk,, Fromk, To}

where, for notational convenience, we assume that N1 1, .. •, Nk,,, are unique. Also, let
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ii, 2 .. , i. and jl, j2, ... , j, be integers, not necessarily distinct, in the range 1 to k,

indicating the tuple variables (possibly repeated) appearing in the target list and aggregate,
respectively;

at, 1 < I < n, be an integer in the range 1 to rmi,, indicating the attribute names appearing in
the target list where (Vu)(Vv), (I < u < n A 1 < V < n A u j v A t' = i,,), a. 0 a.;

Ch, 1 < h < p, be an integer in the range 1 to rj, indicating the attribute names appearing in
the aggregate where (Vu)(Vv), (1 < u < p A 1 < v < p A u A v A ju = j,,), c, 0 cv; and

-h, 32, ... , , be the distinct integers in ji, j2 , ... , jp where ji = j1, indicating the z (non-

repeated) tuple variables appearing in the aggregate.

Then, the TQuel retrieve statement with the aggregate fl in the target list has the following syntax

range of r' is R'

range of r' is

retrieve into N+I(Ni+,1 =r1 .Nts.,.

Nk+ 1.n+ I W fC 1 .Nj,1 rI by r), -N .. rc N,,,Cp

for w,

where 01

when rl)) (10)

valid from v to X

where 4

when r

This statement computes a new relation R)+, over the relational scheme

k+l = {Nk+1,i, ... , Nk+l,., Nk+1.,+1, Fr.m'k+l, Tok+i}

The for clause specifies an aggregation window function for the aggregate f . W, contains one
or more keywords that determine, along with the time granularity of R?, ... , R', the length of
the aggregation window at each time t. The keywords each instant represent the aggregation
window function w(t) = 0 (i.e., an instantaneous aggregate) and the keyword ever represents
the aggregation window function w(t) = oo (i.e., a cumulative aggregate). The length of the
aggregation window specified by other keywords (e.g., each day, each week, each year) is a
function of the underlying time granularity of the database. For example, if the time granularity
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is a day, then w = each week translates to the aggregation window function w(t) = 6. Also, the
aggregation window function need not be a constant function. For example, if the time granularity
is a day, then w = each month translates to the aggregation window function w, where w(t) = 31
if t corresponds to January 31 and w(t) - 28 if t corresponds to February 28. We let Q,, be the
function denoted by w, and the time granularity of R , ..., R,.

Every TQuel retrieve statement of the form of (10) is equivalent to an expression in our historical
algebra of the form

R -N.. N,,,. N.,,p(6r, EXTEND(o,,SUCC($,)) nN,,, In ... n N3_, n N.,,, p
q04#. bNh.,2=N~g , 1 ,A^..A^Nip. =N.v, ,PLI(T(ReI)< .. T(ak) a~gg ))) il

where

Ragg =Afl n . , ..... NiP}( ..... ip,.(T(R;,) T (R1I I Nl,.I A2,2 )z (12)
sr,,, N,, . Njm] , (,(T(R1 N)> ... "T(R j

over the scheme Vg - {Naggi, .- , Naggip}, where Vu, 1 < u < p - 1, Naggj, = Nj.+,.C.+I
and Nagg ,p is the attribute name associated with the aggregate value. Here we assume that f, is
the family of scalar aggregates (e.g., COUNTINT) corresponding to the family of TQuel aggregates
f' (e.g., count). Expression (12) applies the where and when predicates to the cartesian product of
the relations associated with tuples variables appearing in the aggregate, and applies the aggregate
operator to the result. Expression (11) differs only slightly from the expression (3) on page 26 for
a retrieve statement without aggregates. The expanded selection operator provides the necessary
linkage between the attributes in the aggregate's by-list and corresponding attributes in the base
relations. The expanded derivation operator imposes the TQueI restriction that the valid time of
tuples in the derived relation be the intersection of the valid time specified in the valid clause, the
valid times of the tuples in the base relations participating in the aggregation, and the valid time
of the aggregate itself. Of course, if f, is a unique aggregate, then AU should be used instead of

A in (12).

Two changes to (11) are required to handle special cases. First, if a tuple variable ),, 1 < u < x,
does not appear outside the aggregate f, in (10), then N3., I does not appear in the second subscript
of the 8 operator. Also, if j, appears neither outside the aggregate f, in (10) nor in its by clause,
then R0991 is replaced by

nagR , C { ((NULLV XLUE(N3,, ,), {t I Vr, r E Ra,, 1, r Z valid(r(Nag,.ip))})) }

The first change removes the restriction that the valid time of a tuple in the derived relation must
intersect the valid time of at least one tuple in the base relation associated with tuple variable j,.
The second change, ensures that a value (possibly a distinguished null value) for the aggre-ate is
specified at each time t, t E T
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3.3.2 TQuel Aggregates in the Inner Where Clause

Aggregates may also appear in the where, when, and valid clauses of a TQuel retrieve statement.
We now show the algebraic equivalents of TQuel retrieve statements with aggregates in these
clauses, first presenting the algebraic equivalent of a TQuel retrieve statement with an aggregate

* in an inner where clause. Assume that a TQuel aggregate f2 appears in t in (10) and let

g1, g, --, g. be integers, not necessarily distinct, in the range 1 to k, indicating the (possibly
repeated) tuple variables appearing in the nested aggregate where Vga, 1 < u < y, Bjr, 1 <

V S p, g.= -j.;

di. 1 < 1 < y, be an integer in the range 1 to mg, indicating the attribute names appearing in
the nested aggregate where (Vu)(Vv), (1 < u < y l < v < yAu $ v /\ g,, = g), du # d,,; and

"1, 92, .., 9 be the distinct integers in gj, g2, -. , gy where g = gj, indicating the z (non-
repeated) tuple variables in the aggregate.

Then, f2' in 01 has the following syntax

'A

N( 9 l. , by rg ... N2,d gy,

for w2

where 02

when r2 )

As this TQuel retrieve statement is complicated, containing a nested aggregate with a full com-
plement of by, for, where, and when clauses, we should expect a somewhat complicated algebraic

equivalent.

When modified to account for f'; in 01, the algebraic equivalent of fl, given in (12), becomes,

Rgg, = Nj,2. N, j,°,, e ,N0 1, (Af,, ,.1 , Nil.,, fN,, ,+,, Ni, . .., N,,,,(

N 1N, -.,,N,+ , N , . ,,. (13)

NN, d2 , =N 2 ,,I A Ng,,.I.g 2 ,N , ,.N
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where the attribute name N..., here refers to the aggregate produced in A by fl, the reference to
the aggregate f2 in b1 is replaced by a reference to N,,,, ., and

Ra9 2 = A, n., N,, 1, {N 2, , d.. N,, y} ('No, 1 , ..... N,,, 1 (T(R*,)... T(R

6r.2, N .. Nga,. (&f,0 (T (P ) ... T(R;.))))t

over the scheme Vg = {N , 2 , 1..., Ar , ,}, and f2 is the family of scalar aggregates corre-

sponding to the family of TQuel aggregates f2.

{ ((I, T)) } is a constant relation containing a single tuple whose value component may be
an arbitrary value from an arbitrary domain. Here, we effectively add an additional attribute to
Rj, and then use the attribute as an implicit by-list attribute to restrict tuples in the partition of
T(R,) -... >T(R') at time t to only those tuples that satisfy the predicate in tkj involving the
aggregate f2 at time t.

3.3.3 TQuel Aggregates in the Inner When Clause

Assume now that the aggregate f2 appears in r, in (11) rather than in 01. The only aggregates
that can appear in r, are earliest and latest. Therefore, if we let R... 2 be the two-attribute
algebraic equivalent of f2, then the algebraic equivalent of f' would be the same as that given in
(13) for an aggregate in the inner where clause, with one exception. The reference to f2 in r, is
replaced by a reference to Nagg, y+1, not Na, y. The valid component of N,.g2, y is the time when
the valid component of N,, 2 +I was the oldest interval, hence Na9 , Y+ I is used in evaluating r-."

If we assume that f2 is earliest, then R.9 2 is'

Rg992 &N-.gg2 1 =NsgV2 .y+1 (ASMALLEST, ld 'n.21 NP~tM {N 92, d2 .  V I

*................... ........N,,, d .TT(R;)), (14)

a.,(Rpoihon T(RD,;.. TR.))

over the scheme )4  = {NQ99 , ) ... , N 92, V+1} where

Rpsiio =&N .jj 040ITION, ., No,,41 , O(T(R',), T(R',))) (15)

Expression (14), while structurally equivalent to expression (8) on page 32, is considerably
more complex because of the presence of by, when, and where clauses in the nested aggregate.

37

S



The attributes of A's first argument now include the attributes appearing in the by clause and the
attributes of A's second argument include the attributes of relations associated with tuple variables
appearing in the aggregate. Also, tuples in the second argument are now required to satisfy the
where predicate and, for some interval in the time-stamp of attribute N 1 d1, the when predicate.
Finally, because TQuel assumes earliest and latest return T for an empty partition of R', the
tuple ( (0, T)) is added to R.o,,o so that T will be considered the earliest interval at those times
when the partition of A's second argument is empty. Recall that SMALLEST, defined on page 32,
returns zero when passed an empty relation.

3.3.4 TQuel Aggregates in the Outer Where Clause

Assume that the TQuel aggregate f, appears in 0 in (10) rather than in the target list. Then, the
algebraic equivalent of the TQuel retrieve statement is

R=*N,1 .1,.... N .(..(Sr,,EXTEND({.,SUCC(.,,)) n N h1 ,1 n .N#. ,.(

&*, A Nij,' :N,,,. , 1 ... AN , (T(R) T(Rk) Rgg,))

where the reference to f' in 4' is replaced by a reference to Nagg.,p. Note that the only other

change from expression (11) is the elimination of attribute N,9,,p from the projection. since the
aggregate does not appear in the target lst.

3.3.5 TQuel Aggregates in the Outer When Clause

Assume now that the aggregate f/ appears in r in (10). Then, the algebraic equivalent of the
TQuel retrieve statement is

R = (8r,, N.(r. EXTEND(0 SUCC(or)) n Nj, n - N,,,, nfl

6'* , A N )2,_J =N .,9 ,- I ^ .-A N IP. ..= N ., ,,.P-_ (T (R l) : " ... T (R ) > R .ggj )))

where the reference to fl in r is replaced by a reference to Nagg1,p+l. If the aggregate f is in v or

X rather than r, analogous changes would be required.

3.3.6 Multiply-nested Aggregation

The approach described above for handling aggregates in the inner where and when clauses can be
used to handle aggregates in a qualifying where or when clause of an aggregate in the outer where,
when, or valid clauses. This method of converting TQuel aggregates to their algebraic equivalents,
when there is an aggregate in a qualifying clause, can also handle an arbitrary level of nesting of

aggregates.
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3.4 Correspondence Theorems

Now that all possible locations for aggregates in a TQuel retrieve statement have been examined,
we can assert that

Theorem 3 Every TQuel retrieve statement has an equivalent expression in our historical algebra.

PROOF. Induct on the number of aggregates appearing in the statement to arrive at an equivalent
algebraic expression, applying the replacements discussed above in Sections 3.3.1 through 3.3.5, as
appropriate. Incorporate the handling of transaction time via the rollback operator ( ) as discussed
elsewhere [McKenzie & Snodgrass 1987A]. Construct a tuple calculus expression for the retrieve
statement and the algebraic expression, then prove equivalence using the technique used in the
proof of Theorem 2. While the proof is aided by the presence of auxiliary relations in the tuple
calculus semantics for aggregates [Snodgrass 1987], it is still cumbersome and offers little additional
insight. I

In a similar fashion, by also using the modify.state and modify.scheme commands described
elsewhere [McKenzie & Snodgrass 1987B, one can construct equivalent algebraic statements for
the TQuel create, delete, append, replace, and destroy statements.

Theorem 4 The historical algebra defined here is strictly more powerful than TQuel.

PROOF. The previous theorem shows that the expressive power of the algebra is as great as that of
TQuel. Now, for two TQuel relations R' and R , consider the algebraic expression T(R1) T(R ).
Because the semantics of TQuel requires that tuples rather than attributes be time-stamped, this
algebraic expression has no counterpart in TQuel. Hence, the algebra is strictly more powerful
than TQuel. 1

4 Review of Design Decisions

In defining the historical algebra presented in Section 2, we were faced with three major design
decisions: whether to time-stamp tuples or attributes, whether to allow single-valued or set-valued
time-stamps, and whether to allow single-valued or set-valued attributes. We discuss here our
choices and the importance of those choices in determining the properties of the algebra. We also
mention the choices to these design decisions made by the developers of seven other historical
algebras: Ben-Zvi's Time Relational Model [Ben-Zvi 19821, Clifford's proposed extension to the
snapshot algebra [Clifford & Croker 19871, Gadia's homogeneous and multihomogeneous historical
algebras [Gadia 1984, Gadia 19861, Jones' extension to the snapshot algebra to support time-
oriented operations for LEGOL [Jones et al. 19791, Tansel's historical algebra (Tansel 19861, and
Navathe's historical algebra [Navathe & Ahmed 1986]. A detailed review and evaluation of historical
algebras, using desirable properties as evaluation criteria, can be found elsewhere [McKenzie &
Snodgrass 1987C).
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4.1 Time-stamped Attributes

We decided to time-stamp attributes rather than tuples to support historical queries. We wanted
the algebra to allow for the derivation of information valid at a time t from information in underlying
relations valid at other times, much as the snapshot algebra allows for the derivation of information
about entities or relationships from information in underlying relations about other entities or
relationships. This requirement implies that the algebra allow units of related information, possibly
valid at disjoint times, to be combined into a single related unit of information possibly valid at some
other times. Support for such a capability required that we define a cartesian product operator
that concatenates tuples, independent of their valid times, and preserves, in the resulting tuple, the
valid-time information for each of the underlying tuples. Only by time-stamping attributes could
we define a cartesian product operator with this property and maintain closure under cartesian
product.

Tansel and Gadia also time-stamp attributes. Only Tansel's algebra and Gadia's multihomo-
geneous model, however, allow tuples with disjoint atribute time-stamps; Gadia's homongeneous
model requires that a tuple's attribute time-stamps be identical. Clifford assigns a time-stamp,
termed a lifespan, to each tuple in a relation and to each attribute in the relation's scheme. The
lifespan of each attribute of a tuple is then computed as the intersection of the tuple's lifespan
and the attribute's lifespan, as specified in the relation's scheme. Ben-Zvi, Jones, and Navathe all
time-stamp tuples only.

4.2 Set-valued Time-stamps

We decided to allow set-valued attribute time-stamps for several reasons. First, we wanted the
algebra to support the user-oriented conceptual view of historical relations as 3-dimensional ob-
jects [Ariav 1986, Clifford & Tansel 19851 and each historical operator to have an interpretation,
consistent with its semantics, in accordance with this conceptual framework. That is, we wanted
the definitions of the algebraic operations to be consistent with the conceptual view that historical
operators manipulate space-filling objects. For example, the difference operator should take two
space-filling objects (i.e., historical relations) and produce a object that represents the mass (i.e.,
total historical information) present in the first object but not present in the second object. Note
that this description of operations on historical relations as "volume" operations on 3-dimensional
objects is consistent not only with the conceptual view of historical relations as space-filling ob-
jects but also with the semantics of the individual snapshot algebraic operations as operations on
2-dimensional tables, extended to account for the additional dimension represented by valid time.
Secondly, we wanted the algebra to satisfy the following commutative, associative, and distributive
tautologies involving union, difference, and cartesian product that are defined in set theory [En-
derton 1977 as well as the non-conditional commutative laws involving selection and projection
presented by Ullman [Ullman 1982], while supporting the definition of historical intersection in
terms of historical difference.

QuR= RQ

Q R= RQ
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O&F (OF 2 (R)) =f, (&, (R))

QO(ROS) - (QCJR)OS

Q (R S) = (Q R) < S

Q (ROS) = (Q R)O(Q S)

&F (Q 0 R) = GF(Q) &F(R)

&F(Q R) = &F(Q) - OF(R)

*x(Q 0 R) = rx(Q) 0 fx(R)

Q R = Q-(Q-R)

We specifically did not include one tautology, the distributive property of cartesian product over
difference, in this list because it is inconsistent with the conceptual view of operations on historical
relations as "volume" operations on space-filling objects (McKenzie & Snodgrass 1987C]. Finally,
we wanted there to be a unique representation for each historical relation to keep the semantics of
the algebra as simple as possible.

If we had decided to disallow set-valued attribute time-stamps, then we would had to have pre-
mitted value-equivalent tuples to model accurately real-world temporal relationships. Yet, value-
equivalent tuples, because they spread temporal relationships among attributes across tuples, would
have caused problems in defining an algebra with the above properties. If value-equivalent tuples
had been allowed (and set-valued attribute time-stamps disallowed), a unique representation for
each historical relation could not have been specified without imposing inter-tuple restrictions on
the attribute time-stamps of value-equivalent tuples. Also, historical operators, in particular the

difference operator, that would have satisfied both the conceptual view of historical operations as
"volume" operations on space-filling objects and the above tautologies, while preventing loss of
information about temporal relationships as an operator side-effect, could not have been defined.

By allowing set-valued attribute time-stamps (and disallowing value-equivalent tuples), we were
able to define an algebra that has the desired properties. Because value-equivalent tuple3 are
disallowed, each historical relation is guaranteed to have a unique representation. In addition, the
definitions of historical operators given in Section 2 are consistent with the conceptual view of
historical operations as "volume" operations on space-filling objects, and the algebra satisfies the
ten tautologies listed above.

The decision to allow set-valued attribute time-stamps unfortunately prevented the algebra
from having other less desirable, but nonetheless desirable, properties. If we had not allowed
set-valued attribute time-stamps, we could have retained the first-normal-form property of the
snapshot algebra. Also, we could have replaced the single complex historical derivation operator
with two simple operators, one performing historical selection and the other performing historical
projection.

Clifford and Gadia also allow set-valued time-stamps. Ben-Zvi, Jones, Navathe, and Tansel all
allow only single-valued time-stamps.
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4.3 Single-valued Attributes

We decided to restrict attributes to single values to retain in our algebra the commutative properties
of the selection operator found in the snapshot algebra. If we had allowed set-valued attributes,
without imposing intra-tuple restrictions on attribute time-stamps, then we would had to have
combined the functions of the selection and historical derivation operators into a single, more
powerful operator. This consolidation would have been necessary to ensure that the temporal
predicate in the current historical derivation operator was considered to be true for an assignment
of intervals to attribute names only when the predicate in the current selection operator held for
the attribute values associated with those intervals. This new operator would have satisfied the
commutative properties of the current selection operator only in restricted cases. Hence we would
have limited the usefulness of key optimization strategies in future implementations of our algebra.

Ben-Zvi, Jones, and Navathe also restrict attributes to single values. Clifford, Gadia, and
Tansel, however, allow set-valued attribute values.

5 Summary and Future Work

This paper makes two contributions. First, an historical algebra is defined as a straightforward ex-
tension of the conventional relational algebra. Secondly, the algebra is shown to have the expressive
power of the temporal query language TQuel.

The design of an historical algebra is a surprisingly difficult task. Although defining an algebra
that has a given property is easy, it is much more difficult to define an algebra that has many

*. desirable properties. We found that many subtle issues arise when attempting to define an algebra
that satisfies several design goals. Also, all desirable properties of historical algebras are not
compatible [McKenzie & Snodgrass 1987C]. Hence, the best that can be hoped for is not an algebra
with all possible desirable properties but an algebra with a maximal subset of the most desirable
properties.

The historical algebra defined in Section 2 has what we consider to be the most desirable prop-
" erties of an historical algebra. First, the algebra is a straightforward extension of the snapshot

algebra. Each relation and algebraic expression in the snapshot algebra has an equivalent coun-
terpart in the historical algebra. Expressions in the snapshot algebra can be converted to their
historical equivalent simply by replacing each snapshot operator with its corresponding historical
operator and converting the referenced snapshot relations to historical relations by assigning all
attributes the same time-stamp. The historical operators U, -, , u, and * all reduce to their
snapshot counterparts when all attribute time-stamps are the same. The algebra is also consistent
with the conceptual view of historical relations as 3-dimensional, space-filling objects and the view
of operations on historical relations as "volume" operations. In addition, the algebra supports
historical queries, has the expressive power of a non-procedural temporal query language, includes
aggregates, does not exhibit temporal data loss as an operator side-effect, and has a unique repre-
sentation for each historical relation. Finally, the algebra satisfies all but one of the commutative,
associative, and distributive tautologies involving union, difference, and cartesian product as well
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as the non-conditional commutative laws involving selection and projection. No other historical
algebra to our knowledge has all these properties.

The obvious future work is an implementation of the algebra as defined in Section 2 and de-
velopment of optimization strategies. At this point, we feel that the formal definition of temporal
databases and their query languages has yielded many results (c.f., [McKenzie 19861), while im-
plementation issues such as access methods, physical storage structures, and novel storage devices
remain largely unexplored.
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A Notational Conventions

This appendix describes the notational conventions used in this paper.

Notation Usage

u Historical union operator

Historical difference operator

Historical cartesian product operator

ET Historical selection operator

k Historical projection operator

6 Historical derivation operator

* A Historical aggregation function for non-unique aggregates

AU Historical aggregation function for unique aggregates

a, b, c, d Attribute variables

Da Arbitrary flat domain associated with attribute Na

F Predicate in the historical selection operator

f Scalar aggregate

G Predicate in the historical derivation operator

g, ,j Relation variables

h, I Variables ranging over attributes in target list, by-list, or aggregate

I Domain of intervals

-I Interval

Interval from the time-stamp of attribute Na

Shorthand for IN.

k Number of relations

m, m, Number of attributes in relation schemes .M, X4

) ,V Relation schemes

N., Ni, Attribute names

n Length of target list or by-list

P(I) Power set of .

9P(7) Power set of T

p, y Number of attributes appearing in an aggregate

Q, R, R, Historical relations
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q, r, ri Historical tuple variables

Q', R', I? TQuel relations

q', r', TQuel tuple variables

T Time Domain

T Subset of T

t Element of T

u, v Temporary variables

V. Temporal function in the historical derivation operator

valid(r(Na)) Time-stamp of attribute N, of tuple r

valid(ra) Shorthand for valid(r(Na))

value(r(N)) Value component of attribute N. of tuple r

value (r.) Shorthand for value(r(N,))

w Aggregation window function

X Set of by-list attributes in an aggregate

x, z Number of tuple variables appearing in an aggregate

1P

4
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B Auxiliary Functions

We used several auxiliary functions in the definition of the historical derivation operator. We
present here formal definitions for each of those auxiliary functions.

FIRST takes a set of times from the domain Pg(T) and maps it into the earliest time in the set.

FIRST : P(7) T " u 1

FIRST(T) :
S t, t E T A Vt', t' E T, t < t' otherwise

LAST takes a set of times from the domain P(T) and maps it into the latest time in the set.

LAST: P(T) -7 7 I _

LAST(T) =
t, t E T A Vt', t' E T, t > t' otherwise

PRED is the predecessor function on the domain T. It maps a time into its immediate predecessor
in the linear ordering of all times.

PRED : 7 -. TuL

PRED(±) t = FIRST(T)
PRED(t),

tp, tp E TA tp < t A Vt', t' E 7A t' < t, t' < tp otherwise

SUCC is the successor function on the domain 7. It maps a time into its immediate successor in
the linear ordering of all times.

SUCC: T - 7

SUCC(t) _ ts, ts E 7 ts > t A Vt', t' z T At' > t, t' > ts

Let the domain I be the subset of 7(T) that represents all possible non-disjoint intervals of time.

I {I I E P(T) A Vt, t 6 I -. FIRST(I) < t < LAST(I)}
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FM,

Note that I includes intervals of length 1. Also let P'(I) be the power set of . While I c NT),
each element of 6P(Z) is a set, each of whose elements are also elements of P(T).

EXTEND maps two times into the set of times that represents the interval between the first time
and the second time.

EXTEND 77

t t t, < t < t } otherwise

INTERVAL maps a set of times into the set of intervals containing the minimum number of
non-disjoint intervals represented by the input set. Each time in the input set appears in exactly
one interval in the output set and each interval in the output set is itself represented by a set of
times

INTERVAL partitions a set of times into its corresponding set of intervals where each
interval is itself represented by a set of times.

INTERVAL: 8(T) -- P(I) U 0

INTERVAL(T) (I I Vt, tE, E T

A PRED(t) E T -- PRED(t) E I otherwise
A SUCC(t) C T - SUCC(t) e I}

Note that INTERVAL partitions a set of times into the minimum number of non-disjoint intervals
represented by the set; each time in T appears in exactly one interval.
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